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Settling of a stamp is studied for a particular case of an orthotropic body, 
Certain supplementary conditions for the existence of a solution are elucidated. 
Settling of a stamp is computed for concrete anisotropic bodies, and the in - 
fluence of rotation of the stamp axes taken into account. 

1. Derivation of basic formulas. The stress-strain Late of an ortho- 
tropic half-space acted upon by a flat stamp elliptic in the plane, is defined by the 

load function 

Y (S&) = P (8na fi)-l In [(!& - m)(Qk + =)-I] 

% = (E + %)A-‘, A = (aaaa + bafia) (ab)-1 

E = cc2 + By, a = co9 8, 0 = sin 8 

(1.1) 

Here P denotes the compressive force applied to the stamp at the center of the 

ellipse, a and b are the ellipse semiaxes and vk are the roots of the character - 

istic equation (1.2) of [l]. We assume that the axes of the ellipse coincide with the 
elastic symmetry axes of the medium, i. e. the boundary plane z = 0 coincides 

with one of the elastic symmetry planes of the body. 
The function (1.1) corresponds to the following stress distribution under the stamp : 

‘Jz (s, Y, 0) = P (2nab)-‘(I - 22 / aa - I/Z / ba)-I’* (1.2) 

and outside the stamp we have a, (5, y, 0) = 0. 

The elastic displacements of the points of the medium under the stamp, orthogonal 
to the boundary, are all equal and given by the formula 

w (5, y , 0) = ,P (Zn~~)-r < i Re iAp)A, (A,,A)+> 
k=l 

(1.3) 

The values of AJ3), Ah, A0 a re shown in [l] , Here and henceforth the angular 
brackets will denote integration in 9 from 0 to 2n. The formula (1.3 > defines 
the settling of the stamp; the settling depends essentially on the material of the medium. 

In what follows, we shall restrict ourselves to considering a particular form of an 
orthotropic body in which the elastic constants satisfy the conditions 

B = A, M=L, G=F 

In this case we have [2 I 

w (2, Y, 0) = P (29~ )/;;I;)-l(Re iAIf (Ao*~)-l> 
AI* = -(L + F)(CWlD h + %)@I + Ys)(Y.q + v,) 
A,* = -(L + F)(CL)-'DA,+* 

(1.4) 
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Ao*+ = (AC - Fyc-1 - 2Koc41a + (LF)-l (N (AC - P) + 

Ko [(A + H)C - 2P]cc~g”) F“*(D C)-“% 

D = (LF)-l[AN + K. (A + H)cc*pa] 

K0 = A - 2N - H, m = Jm h + va + v,) 
HC -->O, A>H 

(misprints in the expressions A,* and Aa* made in [2 ] have been eliminated ) . 

The characteristic equation (1.2) of Cl’] can be written conveniently in the form 

v” + A,v’ + A& + A6 = 0 
(1.5) 

A, = (CL)-‘=[AC + La - (L + W + CNI 

Ad = (CL2)-1 (ALa + N [AC + La - (L + F)2] + [c (A + H) - 

2 (L + F)a]Koaa~Z}, Aa = FC-1D 

When the inequalities shown above hold, the quantities Aj are positive for all 

6E(O,2n) . and this implies that Eq. (1.5 ) has no real roots, This agrees with the 
requirement that the system of elastic equilibrium equations be fully elliptic. 

From (1.4 ) it is clear that w (5, Y v 0) is a symmetric function of any three dif - 
ferent roots of (1.5). We can assume without loss of generality that their imaginary 
parts rnh (k = 1, 2, 3) are positive, i.e. m = ml + m, + ma > 0 for all 0 in 
the interval shown above. 

From (1.5) we can derive the following algebraic equation for m : 

f (m) = (ma - A#’ - 8 mern- 4A, = 0 (1.6) 

On the other hand we have 

(VI + %)@I + VJ)@Q + vr) = --‘l&’ (m) 

hence we can write (1.4) in the form 

w (2, Y, 0) = P (16~ m)-l <f’ (m)(A,**A)-1) 
(1.7) 

Since the quantity w must be positive and Ao** (m) > 0 for all 9, the prob - 
lem of existence and uniqueness of a solution of the problem in question depends, in 
particular, on the following conditions being fulfilled: (a 1 positive roots of (1.6) exist ; 
(b ) a unique positive root m of this equation exists for which f’ (m) > 0. 

Let us investigate the roots of Eq. (I.. 6 ) , The following cases are possible at vari- 
ous values of 9 from the interval (0, 2n) : 

A,% - 4A,<O, A,=- a>0 

Wehave f(+oo)>.O,f(l/~)<O. Inthefirstcase f(O)fO, and in the 
second case f (0) > 0. Since 
the point V;T; 

f’ (m) has a single positive root lying to the right of 
and the points I/l/s are points of inflection, it follows that 

in the first case we have only a single positive root of (1.6 ) , while in the second case 
we have two roots. In the latter case f’ (m) > 0 only for the larger of those two 
roots, therefore the conditions given above hold for both cases. 

Differentiating the identity (1.6 ) with respect to 9 we obtain 
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9 ’ = KOT,, [f’ (m)]-1 sin 46 

To = (2Lc ~~)-l{(A + fi?) m + v/ABL-l [C(A + 11) - 2 (L + I:)“]} 

Since f’ (m)# 0, m attains an extremum when 6 = kn / 4 (k = 1, 2, . . .). 
If To > 0 (the condition which holds for all real media referred to in [3], then the 
sign of the second derivative of m with respect to 8 is determined by the sign of 

the expression K, eos 46. If Ko > 0 (K, < 0) , then m attains a minimum 

(maximum) at 0 = 0, 3t / 2 and a maximum (minimum) at 6 = n i 4 (we only 
need to consider the first quarter), 

When 6 = 0, n I 2 the roots vk of (1.5) are obtained in the following explicit 

form : 
Q2 = @LC)-‘{[AC - F (F + 2L)] Fv[AC - (F + 2L)2](AC - P)} 

yg2 zz -_NL-1 

The same result is obtained by setting formally in (1.5) K. = 0, i, e. by in - 

traducing a “model” transversely isotropic medium for the material in question. For 

Table 1 this medium the quantity m will be 

I I I 

constant and described, in the polar m, 
eo= 0 15 30 45 0 coordinates, by a circle the radius of 

which is m when 6 = 0, n / 2. If 
1 3.49059 3.49059 3.49059 3.49059 
2 3.01441 3.00200 2.97596 2.96226 

K. > 0 for the given material, then 

3 3.41205 3.39110 3.34655 3.32274 
the curve representing the dependence 

4 3.36718 3.39839 3.45586 3.48252 of m on 6 will be found outside 

5 3.43527 3.47047 3.53457 3.56404 this circle, and inside when K. < 0 . 

6 3.20477 3.21953 3.24774 3.26124 The first medium is represented by 

7 3.25234 3.27046 3.30473 3.32102 e. g. sylvite , fluorspar , rock salt and 
cubic pyrites, while topaz and bary - 
tes can serve (after some averaging of 

the elastic constants) as examples of media for which K, < 0. 
For a transversely isotropic body (K, 5 0) A,,** (m,,) and f’ (mo) are all 

constant, and the settling of a plane stamp of elliptical crossection is determined by 

the formula 

w (z, y, 0) = P (16n G)-lj’ (m,)A,** (m,) (A-‘> 

where the elliptic integral can be found from tables. In the case of a circular stamp 
the result can be obtained in terms of the elementary functions. 

If K. # 0, the largest root of (1.6) can be found for any value of 0 using the 
method of consecutive approximations and the equation 

which yield an increasing bounded sequence converging to m . For an isotropic me- 

dium we have A, = A4 = 3, Aa =I, m = 3. 

Table 1 gives m for certain values of 9 for beryl(1) , topaz (2 ) , barytes (3 ), 
cubic pyrites (4), fluorspar (5 ) I rock salt (6 ) and sylvite (7 ) . The data for topaz and 
barytes were obtained after averaging their elastic constants (neither material belongs 
to the class in question [a] ). The following values were accepted 
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for topaz A-= 3215, C = 3000, H = 1280, F = 880, L = 1225, N = 1330; 

for barytes A = 854, C = 1074, H = 468, F = 274. L = 208, N = 283. 
The settling of the stamp was computed for the anisotropic media shown above, 

using the formula 
w = P (64rra.106)-rT (e), e = b/a 

T (e) = <f’ (uz) (A,,+*A’)-l>, A” =@a + ,26Z)‘+ 

The values of T (e). 105 are given in Table 2 (where the media are numbered 
as in Table 1) . 

It should be noted that for the model media introduced above corresponding values 
of T (e) differ from those in Table 2 only in the fourth decimal place. It therefore 
appears that in practice it is sufficient to carry out the basic computation of the sett - 
ling of the stamp. 

2. Settling of a plane elliptic stamp the axes of which are 
inclined relative to the elastic symmetry axes of the material. 
Let the major semiaxis of the loading ellipse be inclined to the z -axis at the angle yo. 
Then the complex solutions of the elastic equilibrium equations can be constructed in 
the form 

(2.1) 

Q,k = (EI + w~A-~, El = 5s + YIP 

q = 2 Cos y. + y sin yo, y, = --x siny, + g Cos y. 

where we introduce new notation for the elastic displacements of the points of the me- 

dium , and in particular us (I, y, z) = w (2, Y, I). The function UJ* (L&k) represents 

the functions Uj (5, Y, a) in the above sense. We have 

E1 = 5% + YS,, al = cos (0 + y01, I& = sin (6 + yO) 

which together with (2.1) , imply that the settling of the stamp is determined in this 
case by (1.7) where a and 6 in the expressions for f’ (m) and Ao** are replaced 
by a, and 6r. It is evident that for an isotropic medium and a transversely iso - 

tropic body the inclination of the axes of the stamp does not yield a new value for its 

settling when the E -axis coincides with the elastic symmetry axis. 

1 1224 i630 1919 2498 1 1680 1680 1680 1680 

2 861 1829 1352 1762 2 1185 1319 1406 1435 
3 3i95 4387 5006 6520 3 4366 4861 5203 5309 
4 838 1149 1319 1712 4 ii56 1283 _I368 1397 
5 1997 2741 3128 4067 5 2740 3046 3247 3314 
6 6321 8677 9600 12877 6 8673 9644 10260 10492 
7 10545 14473 16516 21476 7 14469 16086 17148 17502 

Table 2 

‘I4 ‘Im -fo*= 5 

- 
15 

I 
30 

Table 3 

45 
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We also see that the settling of the stamp is identical when ~0 = 0, n / 2. It can be 
shown that the settling is extremal at the above values of yo, as well as at YO =I n / 4. 

Table 3 gives the values of TI- 105 for certain values of yo and c = ‘ia 
(the media are numbered as in Table 1). 

The results obtained indicate that maximum settling occurs for all media when 
‘y,=n/4. 
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